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INTRODUCTION

FUNCTIONS FOR MOOG  SERVOVALVES

It is often convenient in servoanalysis

or in system synthesis work to represent

an electrohydraulic servovalve by a sim-

plified, equivalent transfer function. Such

a representation is, at best, only an ap-

proximation of actual servovalve perform-

ance. However, the usefulness of linear

transfer functions for approximating serv-

ovalve response in analytical work is well

established.

The difficulty in assuming an explicit

transfer function for electrohydraulic ser-

vovalves is that many design factors and

many operational and environmental var-

iables produce significant differences in

the actual dynamic response. Consider

the variables of the valve design. It is

well known that internal valve paramaters

(e.g., nozzle and orifice sizes, spring

rates, spool diameter, spool displace-

ment, etc.) may be adjusted to produce

wide variations in dynamic response. An

analytic approach for relating servovalve

dynamic response to internal valve para-

meters is given in Appendix I of this tech-

nical bulletin.

Once a servovalve is built, the actual

dynamic response will vary somewhat
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with operating conditions such as supply

pressure, input signal level, hydraulic

fluid temperature, ambient temperature,

valve loading, and so forth. These effects

a re  i ns ign i f i can t  f o r  sma l l  va r i a t i ons

about design values, but should be con-

sidered where wide excursions are antici-

pated. It is important to appreciate and

control these and other operational vari-

ables when performing measurements of

servovalve dynamics. If such precautions

are not taken, misleading and inaccurate

results may be obtained. Appendix II to

this Bulletin describes the production



equipment presently used by Moog to

measure servovalve dynamic response.

Another difficulty in assigning simplified,

linear transfer functions to represent

servovalve response is that these valves are

highly complex devices that exhibit

high-order, nonlinear responses. If a first,

second, or even third-order transfer function

is selected to represent servovalve

dynamics, still only an approximation to

actual response is possible. Fortunately, for

most physical systems, the servovalve is not

the primary dynamic element, so it is only

necessary to represent valve response

throughout a relatively low frequency

spectrum. For instance, if a

servovalve-actuator is coupled to a load

which exhibits a 50 cps resonant frequency,

it is meaningful only to represent valve

dynamic response in the frequency range to
50 cps. Similarly, for lower response

physical systems, the contribution of valve

dynamics throughout a correspondingly

smaller frequency range need be

considered. This simplification of actual

servo response should be applied whenever

practicable, for the reduced analytical task

associated with the system analysis is

obvious.

These approximations to servovalve

response have resulted in such expressions

as "the equivalent time constant of the

servovalve is - seconds" or "the apparent

natural frequency of the servovalve is -

radians /second." If a representation of

servovalve response throughout the

frequency range to about 50 cps is sufficient,

then a first-order expression is usually

adequate. Figure I shows a typical valve

dynamic response, together with the

response of a first-order transfer function.

The first-order approximation is seen to be

quite good throughout the lower frequency

region. The time constant for the first-order

transfer function (i.e., the equivalent

servovalve time constant) is best established

by curve fitting techniques. If a quick

approximation is desired, the equivalent time

constant should correspond to the 45°

phase point rather than the 0.7



amplitude point (-3 db). In general, these
points will not coincide as the higher-
order dynamic effects contribute low fre-
quency phase lag in the servovalve re-
sponse, while not detracting appreciably

from the amplitude ratio.

If servovalve response to frequencies
near the 90 ° phase lag point is of in-
terest ,  then a second-order  response
should be used. In a positional servo-
mechanism, a second-order representa-
tion of the servovalve response is usually

sufficient, as the actuator contributes an
additional 90 ° phase lag from the in-
herent integration. Figure 2 shows a sec-
ond-order approximation to the servo-
valve dynamics of Figure 1. Here, the
natural frequency is best associated with
the 90 ° phase point, and the damping
ratio with the amplitude characteristic.

Other factors will often weigh more heav-
ily in the choice of an approximate nat-
ural frequency and damping ratio. For
example, it may be desirable to approxi-
mate the low frequency phase character-

istic accurately and, to do so, a second-
order transfer function which does not
correlate with the 90 ° phase point may
be used. A good deal of judgment must,
therefore, be exercised to select the most
appropriate transfer function approxima-

tion.

SERVOVALVE
T R A N S F E R  F U N C T I O N S

Appropr ia te  t rans fe r  func t ions  fo r

standard Moog servovalves are given be-
low. These expressions are linear, em-
pirical relationships which approximate
the response of actual servovalves when

operating without saturation. The time
constants, na tu ra l  f requenc ies ,  and
damping ratios cited are representative;
however, the response of individual serv-
ovalve designs may vary quite widely
from those listed. Nevertheless, these
representations are very useful for ana-
lytical studies and can reasonably form

the basis for detailed system design.

FLOW CONTROL
SERVOVALVES

This basic servovalve is one in which
the control flow at constant load is pro-
portional to the electrical input current.
Flow from these servovalves will be in-
fluenced in varying degrees by changing
load pressures, as indicated in Figure 4.
For null stability considerations, only the
region of this plot about the origin need
be considered. Here, the influence of the
load on flow gain of the servovalve can
be considered negligible. In general, the
assumption of zero load influence is con-
servative with respect to system stability

analyses.

TORQUE MOTOR

VALVE

SPOOL

TO ACTUATOR

FIGURE 3

FIGURE  4

Another linearity assumption which is
often made is that servovalve flow gain
is constant through null. This is theoret-
ically true for an ideal “zero lap” null
cut of the valve spool; however, the ac-
tual lap condition will vary with produc-
tion tolerances. If the spool becomes
overlapped, the servovalve flow gain is
reduced at null. Likewise, an underlap
produces higher-than-normal servovalve
gain. Normal production tolerances main-
tained at Moog hold the spool lap within
±O.OOOl inch for all four null edges. This
close control gives a very small range of
possible nonlinear flow control through
null (about ±3%  for an “axis” null cut);
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SYMBOLS
F R E Q U E N T L Y  U S E D

differential current m a
input to servovalve

servovalve flow in’/sec  (cis)
to the load

servovalve differential Ibs/in’  (psi)
pressure output

servovalve  sensitivity,
as defined

time constants sec.

natural frequencies rad/sec.

damping ratios nondimensional

Laplace operator

but within this range, flow gain may be
from 50%  to 200%  of nominal.

The change in servovalve flow gain at
null may sometimes cause system insta-
bility; or, in other cases, poor positioning
accuracy, or poor dynamic response of
the actuator at low-amplitude input sig-
nals. This situation can be varied one
way or the other by holding a nominal
overlap or underlap, as appropriate.

The dynamic response of Moog flow
control servovalves can be approximated
in the frequency range to about 50 cps
by the following first-order expression:
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+W=K  (l ;,,>
where

K -= servovalve static flow gain

at zero load pressure drop

7  = apparent servovalve time

constant

cis

m a

set

Standard flow control servovalves are
available in several sizes and with many
internal design configurations. The value
of servovalve sensitivity K depends upon
the rated flow and input current. Typi-
cally, for a 5 gpm valve at a rated 8 ma
input current, K = 2.4 cis/ma.

The appropriate time constant for rep-
resenting servovalve dynamics will de-
pend largely upon the flow capacity of
the valve. Typical time constant approxi-
mations for Moog Type 30 servovalves
are given in the table below.

If it is necessary to represent servo-
va lve  dynamics  th rough  a  w ider  f re -
quency range, a second-order response
can be used, as:

K

where

(J,  = 27r f, apparent

natural frequency rad/sec

5  = apparent damping ratio

30

31

32

34

35

.0013

.0015

.0020

.0023

.0029

nd Order

fn
cpr

t;

240 .5

200 .5

160 .55

140 6

110 .65

The first and second-order transfer
function approximations for servovalve
dynamic response listed in the above
table give reasonably good correlation
with actual measured response. It is
possible to relate servovalve response to
internal valve parameters, as discussed
in Appendix I. However, the analytical
approach to servovalve dynamics is most
useful during preliminary servovalve de-
sign, or when attempting to change the
response of a given design. It is better,
and more accurate, for system design to
use  emp i r i ca l  app rox ima t ions  o f  t he
measured servovalve response.

P R E S S U R E  C O N T R O L
SERVOVALVES

TORQUE MOTOR

P
VALVE SPOOL

PRESSURE
A C K

FIGURE  5
TO ACTUATOR

These servovalves provide a differ-
ential pressure output in response to the
electrical input current. The static flow-
pressure curves for a typical pressure
control servovalve are shown ill  Figure 6.
A small droop, or decrease in the con-
trolled pressure with flow, does occur,
even throughout the null region. This
droop is usually small in pressure-control
servovalves; however, in some applica-
tions even a small droop can significantly
alter the system response. In pressure-
flow servovalves, droop is purposely in-
troduced. Transfer functions for these
valves are discussed in the next section.

It is convenient to measure the dy- When a pressure control servovalve is
namic response of a pressure control required to supply flow to the load, the
servovalve by capping the load lines and blocked-load transfer function no longer

sensing the relationship of load pressure
to input current. A second-order transfer
function closely approximates the meas-
ured response in the frequency range to
about 200 cps.

+  (s)  = K,
[1+(%ls+(%)j

where

K, = pressure control servo-

valve static gain psi/ma

Wn  =  2 n  f, apparent natural

frequency rad/sec

< =  apparent damping ratio
nondimensional

FIGURE 6

The controlled differential pressure
may be any rated maximum up to the
system pressure. For a 1000 psi rated
control pressure at 8 ma electrical input,
K, = 125 psi/ma.

With a blocked load, the apparent na-
tura l  f requency for  pressure  cont ro l
servovalves is approximately 250 cps,
and the damping ratio is about 0.3 to
0.5. The actual blocked-load response
for a pressure-control servovalve depends
somewhat on the entrapped oil volume
of the load, so the load volume should be
noted with response data.
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adequate ly  descr ibes  servova lve  re -

sponse. Instead, the output pressure is

determined by the concurrent values of

input current and load flow. A linearized

approximation to the overall servovalve

dynamic relationship can be established

by superposition. Thus, the pressure re-

sponse to input current and the pressure

response to load flow can be considered

separable and non-interacting relation-

ships. The transfer fuctions  which result

from this linearization are easily me-

chanized on analog computers, and sys-

tem design based on these assumptions

has proven to be valid for most cases.

The response of a pressure control

servovalve to load flow at constant input

current can be measured by techniques

described in Appendix II. The character-

istic response is approximated by the

following transfer function:

where

K, = static droop characteristic psi/cis

7  = equivalent droop time

constant set

The droop constant K, represents the

slope of the flow-load curves of Figure 6.

Values for K, generally fall in the range

2 0  t o  5 0  psi/cis.  Spec ia l l y  des i gned

spools can be utilized in pressure control

valves to reduce the droop to almost

zero. The equivalent droop time constant

has a significant effect on the stability of

many servo systems. Typical values cor-

respond to a corner frequency near 10

CPS,  or 0.016 second. The second-order

response of the droop transfer function is

a high frequency effect, usually having a

natural frequency near 200 cps.

For system design, a simplified overall

transfer function which includes both

blocked load and flow droop effects can

be used. This would be:

P ( S )  -[K,  i  -K,  ( 1  + 7s)  Q]  . . . . . . ....,.

where

.~f-.-[l+ (?I)  ,: (g)j
K, = blocked-load pressure

sensitivity psi/ma

K, = zero-load pressure droop psi/cis

7 =  droop time

constant about 0.016 sec.

Wn  = apparent servovalve

natural frequency about 200 cps

< = apparent servovalve

damping ratio about 0.5

For the analysis of most physical sys-
tems, the second-order bracketed term
on the right can be replaced by a suitable
first-order lag, thus simplifying the ex-
pression still further.

P R E S S U R E - F L O W
CONTROL  (PQ)
SERVOVALVES

TORQUE MOTOR

TO ACTUATOR FIGURE 7

These servovalves combine the func-
tions of pressure and flow control to pro-
v ide  charac te r is t i cs  wh ich  con t r ibu te
e f f ec t i ve  damp ing  i n  h igh l y - resonan t
loaded servo systems. Flow from these
servovalves is determined not only by
the electrical input signal, but also by the
differential load pressure. For a linear
transfer function approximation to dy-
namic response, it may again be as-
sumed that principles of superposition

prevail. With this assumption, flow from
the servovalve may be considered sep-
arately dependent upon input current and
load pressure.

For most pressure-flow servovalves,
the dynamic response of each flow re-
lationship (i.e., flow to current, and flow
to load pressure) can be approximated by
a critically damped, second-order trans-
fer function. In addition, it has been
found experimentally that these dynamic
responses are nearly equal. The assump-
tion of identical dynamics further sim-
plifies the overall transfer function, so
that the dynamic performance expressed
mathematically becomes:

Q(s)=(KI~-KK~P)

where

K,  =  servovalve sensitivity to

input current cis/ma

K, =  servovalve sensitivity to

load pressure cis/psi

W, =  equivalent servovalve

natural frequency;

critically damped rad/sec

The static flow-pressure characteristics
for pressure-flow servovalves exhibit a
nearly linear relationship between flow,
current, and pressure as shown in Fig-
ure 8. A wide variation in the sensitivi-
ties K, and K, is possible by appropri-
ate selection of internal valve parameters.
Normally, these constants are selected
to suit the individual requirements of
specific servo systems. Typical values
might be K, =  3 . 0  cis/ma  a n d  K, =
0.02 cis/psi.  The equivalent natural fre-
quency for these pressure-flow control
servovalves is generally about 100 cps.
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These servovalves function as
pressureflow control valves under dynamic
conditions, but act as pure flow control
servovalves in the steady state, or
statically. As such, the benefits of pressure
feedback are realized as damping for a
resonant load, but statically the system
retains the high resolution and stiffness
characteristics obtained with a flow control
servovalve.

The dynamic performance of DPF
servovalves is best represented for system
analysis by the following expression, which
presumes linearity by superposition:

where

K1 = servovalve sensitivity to
input current cis/ma

K2 = magnitude of the dynamic
pressure feedback cis/psi

The values of K1, K2, and ƬƬƬƬ can be set
throughout wide ranges by choice of
internal servovalve parameters. Most
practically, these values are selected for
each specific system application and will
be influenced by various system
requirements (e.g., system frequency or
transient response, static and quasi-static
system stiffness, system accuracies, etc.).
Typical values of K1, and K2 would be
similar to those mentioned for the
pressure-flow control servovalves. Values
for ƬƬƬƬ    generally correspond to a corner
frequency of about 1/3 the load resonant
frequency. For instance, with a 10 cps
resonant frequency load, ƬƬƬƬ     would be set to
approximately:

The equivalent natural frequency of DPF
servovalves is generally about 100 cps.

The frequency sensitive filter 
which operates on the feedback pressure
is created by hydraulic orifices and
capacitive elements. As such, the actual
filter response is nonlinear, reflecting the
square root relationship of hydraulic
orifices. The result is an apparent change
in the filter time constant, ƬƬƬƬ with the
amplitude of the load pressure. This
nonlinearity gives a longer time constant
with increasing amplitude of the load
pressure variation. A longer time constant
allows more effective pressure feedback;
hence, more system damping. As

the amplitude of the load pressure
variations approach zero, the pressure
feedback time constant becomes shorter.
Theoretically this could lead to system limit
cycle oscillations; however, in practice this
seldom occurs due to finite frictions in the
actuator and load. A conservative design
approach is to size the DPF filter for
adequate pressure feedback at a
reasonably low amplitude of load pressure
variations; for instance, equal to 1/10
supply pressure. This allows a linear
analysis of system performance using the
relationships given previously, and gives
good agreement with actual system
dynamic response.

These servovalves represent a further
extension of the pressure-feedback
technique for damping resonant-loaded
servosystems. In PQ servovalves the
pressure feedback is proportional, so acts
for static, as well as dynamic, load forces.
Under static loading, the pressure
feedback produces a servoloop error which



must be offset by a corresponding posi-

tion signal. The effect is that of apparent

compliance of the servoactuator; that is,

the actuator position will change propor-

tional to load force. The DPF servovalve

washes-out the static pressure feedback,

and essentially removes the position

error due to actuator compliance.

In most resonant-loaded servosystems,

the position feedback signal is derived

from the actuator. This means that the

physical compliance of the structure,

which is contributing to the basic reson-

ance problem, is outside the position

servoloop. This compliance causes errors

in position of the load under static load-

holding conditions, the same as caused

by actuator compliance. SLEW servo-

valves include an additional static pres-

sure feedback effect to correct for load

position errors caused by structural posi-

tion errors.

This is accomplished by combining

two pressure feedbacks within the SLEW

servovalve; one, a conventional propor-

tional pressure feedback which has nega-

tive polarity for damping of the load res-

onance; and the other, a positive pres-

sure feedback which causes the actuator

to extend under static loading to correct

for position errors from both actuator

and load compliant effects. The positive

pressure feedback path includes a low-

pass filter, so that it is effective only

under quasi-static loading conditions.

The following transfer function can be

used to represent the SLEW servovalve:

where

K,  = flow sensitivity to

input current c is /ma

K, =  proportional pressure

feedback sensitivity cis/psi

KS  = positive pressure

feedback sensitivity cis/psi

r =  time constant of

low-pass filter set

w” =  equivalent natural

frequency of servovalve;
critically damped rad/sec

Note that if K2  = KS,  then the SLEW

servovalve becomes equivalent to the
DPF servova lve.  However ,  i f  K3  >  K2,

then SLEW correction becomes effective.

Normally K2  is set to give the desired

load damping, and will have a value COT-

responding to that used in either the

PQ or DPF servovalves. The value of K3

is generally about 1.5 K2  but should be

se t  f o r  t he  ac tua l  comp l i ance  o f  t he

servosystem. The corner frequency, f,,
1

of the low-pass filter (where r =  2?rf  1
c

is generally about one-tenth the load

resonant frequency. Actual values for

the pressure-feedback parameters are

best established through analog com-

puter study of the complete actuation

system.

ACCELERATION
SWITCHING (AS)
SERVOVALVES

TORQUE MOTOR

SPOOL

FIGURE 11

In these servovalves, the conventional

proportional input current to the first

stage is replaced by an alternating switch-

ing action. Control of the relative on

and off time durations of the positive

and negative input currents produces a
corresponding rate of change of flow
from the servovalve. In transfer function
notation, this response is:

where
+ (s) = $-

K =  acceleration switching rnJ/seG
servovalve gain time unbalance

it  =  time unbalance of the

current input nondimensional

This relationship is valid for system an-
alysis throughout the frequency range to
near the switching frequency, which is
generally 150 cps or higher. It must be
pointed out, however, that servo perform-
ance for signal information which ap-
proaches the switching frequency is lim-
ited by the sampled-data nature of the
system. Typical values for K would be
from 100 to 1000 ins/secz.

The s in the denominator of the trans-
fer function indicates that the servovalve
acts as an integrator. This is true under
most conditions of operation. A non-
linearity which occurs is apparent when
the servovalve is required to pass flow
to the load. Due to flow-reaction forces
acting on the valve spool, the true in-
tegral effect created by the spool is up-
set. This means that in the steady-state
a finite electrical signal is required to
sus ta in  va lve  f low.  A  cons tan t  inpu t
velocity to an acceleration switching
servo will, therefore, create a small, but
finite, steady error.

With constant-amplitude sinusoidal in-
puts to a switching amplifier and AS
servovalve supplying flow output, this
nonlinearity appears as a break in the
slope of the amplitude ratio of the servo-
valve response. Below the break, the
response exhibits a zero-slope or propor-
tional amplitude ratio. The frequency of
this break point is dependent upon in-
ternal valve parameters and the ampli-
t ude  o f  t he  s i nuso ida l  i npu t .  I n  well-
made servovalves, the break frequency is
generally below 1 cps; so, for system
stability and dynamic response consider-
ations, this effect is unimportant and
can be ignored.
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APPENDIX I
ANALYTIC
ANALYSIS OF
SERVOVALVE
DYNAMICS

It is possible to derive meaningful
transfer functions for electrohydraulic
servovalves, and several papers have
reported such work (ref). Unfortunately,
servovalves are complex devices and
have many nonlinear characteristics
which are significant in their operation.
These nonlinearities include: electrical
hysteresis of the torque motor, change
in torque-motor output with
displacement, change in orifice fluid-
impedance with flow and with fluid
characteristics, change in orifice
discharge coefficient with pressure
ratio, sliding friction of the spool, and
others.

Many servovalve parts are small so
have a shape which is analytically non-
ideal. For example, fixed inlet orifices
are often 0.006 to 0.008 inch in
diameter. Ideally, the length of the
orifice would be small with respect to
its diameter to avoid both laminar and
sharp-edge orifice effects; however,
this becomes physically impractical
with small orifices due to lack of
strength for differential pressure
loading, and lack of material for
adequate life with fluid erosion.
Therefore, the practical design from the
performance standpoint is not
necessarily the ideal design from the
analytical standpoint.

Experience has shown that these non-
linear and non-ideal characteristics
limit the usefulness of theoretical
analysis of servovalve dynamics in
systems design. Instead, the more
meaningful approach is to approximate
measured servovalve response with
suitable transfer functions, as
discussed in the body of this technical
bulletin.

The analytic representation of servo-
valve dynamics is useful during prelim-

inary design of a new valve
configuration, or when attempting to
alter response of a given design by
parameter variation. Analysis also
contributes to a clearer understanding
of servovalve operation.

Rather elaborate analyses of
servovalve dynamic response have
been performed at Moog, including
computer studies which involve several
nonlinear effects, and up to eight
dynamic orders (excluding any load
dynamics). Unfortunately, these
complex analyses have not contributed
significantly to servovalve design due to
uncertainties and inaccuracies
associated with the higher-order effects.

These analyses have been extremely
useful when reduced to their simpler
form. A very adequate transfer function
representation for the basic Type 30
mechanical feedback servovalve is
given in Figure 12. This simplified
representation results from the following
assumptions:

1. An ideal current source (infinite
impedance) is used.

2. Negligible load pressure exists.
3. All nonlinearities can either be

approximated by linear dynamic
effects, or can be neglected.

4. The armature/flapper can be rep-
resented as a simple lumped-
parameter system.

5. Perturbation conditions can be
applied to the hydraulic amplifier
orifice characteristics.

6. Fluid compressibility and viscosity
effects are negligible.

7. Motions of the flapper are small
with respect to spool motion.

8. The forces necessary to move the
spool are small with respect to the
driving force available.

The last assumption implies that the
differential pressure across the spool is

FIGURE 12
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negligible during dynamic conditions. If so,
then spool mass, friction, flow forces, and
other spool force effects can be neglected. At
first this assumption may seem unreasonable;
but it can be shown to be quite valid, and the
simplification which results more than justifies
its use.

The simplified block diagram is a third order
system consisting of the armature/ flapper
mass, damping and stiffness, together with
the flow-integration effect of the spool. The
spool, in this case, is analogous to the piston
of a simple position servoloop.

The rotational mass of the armature/ flapper is
quite easy to calculate. The effective stiffness
of the armature/flapper is a composite of
several effects, the most important of which
are the centering effect of the flexure tube,
and the decentering effect of the permanent
magnet flux. The latter is set by charge level

of the torque motor, and is individually
adjusted in each servovalve to meet
prescribed dynamic response limits. The
damping force on the armature/flapper is
likewise a composite effect. Here, it is known
from experience that the equivalent ζ is about
0.4.

The hydraulic-amplifier orifice bridge reduces
to a simple gain term with the assumptions
listed earlier. This gain is the differential flow
unbalance between opposite arms of the
bridge, per increment of flapper motion.

Internal loop gain of the servovalve is
determined by the following parameters.

The hydraulic amplifier flow gain, K2, can be
related to nozzle parameters by the following:

Any of the loop gain parameters can be
altered to change servovalve response. For
example, the following changes would
increase internal servovalve loop gain: (1)
smaller spool diameter, (2) larger nozzle
diameter, (3) higher nozzle pressure drop, (4)
higher torque motor charge level. The higher
torque motor charge gives a lower kf  which
increases loop gain, but this also lowers the
natural frequency of the first stage.
Unfortunately, the directions of these two
effects are not compatible in that higher loop
gain cannot be used with a lower natural
frequency first stage. Therefore, an optimum
charge level exists which produces maximum
loop gain for the stability margin desired.
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APPENDIX I I
M E A S U R E M E N T
OF SERVOVALVE
DYNAMIC
R E S P O N S E

Moog has developed hrghly specialized

test equipment for production measure-

ment of servovalve dynamic response.

This appendix describes this equipment

and expiains the design philosophy which

insures accurate and consistent dynamic

response measurements.

Servovalve dynamic response is de-

fined as the relationship of output to in-

put with all other operational variables

held constant. This relationship is con-

veniently descrrbed  in terms of the ampli-

tude ratio and phase angle of the output

in response to a sinusoidal input of vary-

ing frequency. The input to Moog servo-

valves is usually considered to be the

drfferential  cur ren t  be tween the  two

motor coils. The two COIIS  may be con-

nected in series aiding; or the valve may

be supplied with a single two-lead coil, in

which case the input becomes the abso-

lute current in the coil.

Servovalve output is normally con-

sidered the primary controlled variable;

e.g., flow to the load or pressure in the

load lines. Measured servovalve output

IS dependent upon the nature of the

load, so it is important for consistent and

useful response informatron  to maintain

precisely known loading conditions. The

philosophy of dynamic testing at Moog

is to attempt to maintain an ideal load.

In  this way, the servovalve response is

most completely isolated with the valve

operating as a single component. Prac-

tically, this philosophy is well suited to

servovalve dynamics, for the measured

information is applicable to all systems

and is consistent if measured at different

times and with different pieces of test

apparatus.

The ideal load for a flow control servo-

valve would be massless  and frictionless,

presenting absolutely no obstruction to

flow from the servovalve. In practice,

this “ n o  l o a d ” operation can be ap-

proached with sufficient purity to assure

no detectable influence due to loading.

The mechanization of this loading condi-

bon is described In  detail later.

For a pressure control servovalve, the

ideal load would have zero flow and zero

comp l iance .  Th is  so  ca l l ed  “b locked

load” is easily obtained with low compli-

ance, capped load lines.

In servovalves which utilize load pres-

sure feedback (i.e., pressure control, pres-

sure flow, dynamic pressure feedback and

SLEW servovalves), the output is deter-

mined not only by the coil current, but

also by the action of the pressure feed-

back. The principle of superposition may

be employed to individually measure the

servovalve response to current with no

load, and the response to load variations

wi th  zero  or  constant  cur rent . T e c h -

niques for the latter test represent an

extension of those described here in that

the appropriate response is measured

while a forced hydraulic load is applied

to the servovalve under test.

DYNAMIC TEST
EQUIPMENT

A simplified schematic for production

dynamic test equipment is presented in

Figure 13. Photographs of a control con-

sole and test actuator appear in Figures

14 and 15, respectively.

The servovalve under test is driven

with sinusoidal input current from the

electronic oscillator. The amplifier cir-

FIGURE 13
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cuitry  which supplies the input current

to the servovalve operates with a high

degree of current feedback. Operation

with current feedback is essential for

precise testing for several reasons, in-

cluding:

1. The dynamic effect of servovalve

coil inductance, which would other-

wise upset the proportional rela-

tionship of coil current to com-

mand input voltage, is virtually

eliminated.

2. Purity of the sinusoidal input cur-

rent is obtained throughout the

response range (to several hun-

dred cps).

3. Calibrations of input current per

unit input voltage are unaffected

by changing from valve-to-valve,

regardless of torque motor coil

resistance.

4. The long term amplifier stability

and accuracy associated with high

feedback are attained.

As indicated in Figure 13, the torque

motor coils are connected in series aiding

in this test equipment. Servovalve op-

eration in this manner is identical to

operation with push-pull differential cur.

rent, with or without quiescent coil cur-

rent. The series coil connection is used

only for simplicity of the electrical cir-

cuitry.

For dynamic flow tests, servovalve out-

put is plumbed to a test actuator. The

actuator has a lap-fit, extremely low

mass p is ton  wh ich  has  no  end sea ls

or rod-end bearing surfaces. Instead,

small rods extend from each face of the

piston to carry, respectively, the core

for a variable reluctance position trans-

ducer and the core for a translational

motion velocity generator. Both trans-

ducers are immersed in oil so that no

external piston seals are required.

The velocity transducer generates a

voltage which is proportional at each in-

stant to the flow from the servovalve.

This indication of output flow is not lim-

ited by resolution of the electrical sensor

nor is the signal reduced in amplitude

for small excursions of the test actuator.

The position transducer signal is utilized

for continuous centerrng  of the piston.

This position signal is supplied to the

servovalve by a low pass, low gain, nega-

tive feedback loop so the average ac-

tuator position is maintained near center.

Electrical signals from the piston vel-

ocity transducer, which indicate output

flow, are passed through an isolating

amplifier, then to a logarithmic poten-

tiometer. The potentiometer dial is cali-

brated directly in decibels (db). Using

the oscilloscope as an error detector, the

operator is able to compare the electrical

output signal at any test frequency with

a reference signal amplitude which is

proportional to the input current. The

db potentiometer can then be adjusted

for zero error. The amplitude ratio of

servovalve output to input current is di-

rectly indicated by the calibration of the

db dial.

The phase angle of servovalve re-

sponse is determined by appropriate

summation of the output flow and the

input current signals. With sinusoidal

current and flow signals, the amplitude

of the summation signal is related to

phase angle. This is seen by the follow-

i n g :

Input current signal et  =Asin  wt

Output flow signal ez=Bsin(  wt+e)

where A and B are constants

8  is the relative phase angle

If these signals are subtracted;

el  - e2= PAsin  ($)][cos(#-$)]

(utilized for phase angles

from 0 to 900)

and by adding the signals:

el  1e2=  pAcos($][sinkt-$$]

(utilized for phase angles

from 90 to 270”)

In each case, the amplitude of the

summed signal is related to the phase

angle between the signals, regardless of

the signal frequency.

C i rcu i t ry  fo r  per fo rming the  phase

measuring function utilizing these re

lationships is included in the test equip-

ment. Following the amplitude ratio

measurement, the operator depresses the

appropriate phase selector button. The

amplitude of the oscilloscope display is

then adjusted to the reference amplitude

by rotating the phase dial. Rotation of

this dial adjusts the gain of the sum-

difference amplifier. The dial is cali-

brated directly in degrees of phase angle

which can be recorded by the operator.

FIGURE 14
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